10.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is:	$\bigcirc -\frac{4}{7}$	$\bigcirc \frac{4}{7}$	$\bigcirc \frac{2}{7}$	$\bigcirc -\frac{2}{7}$
11.	For what values of x , the binomial expansion of $\left(1-\frac{x}{2}\right)^{-1}$ is convergent (valid)?	_	x > 2	x < 2	○ x<1
12.	What is radius of the circle whose part of arclength of measure 4 is with central angle $\frac{\pi}{2}$?		$\bigcirc \frac{4}{\pi}$	$O(\frac{2}{\pi})$	$\bigcirc \frac{\pi}{2}$
13.	If $D\left(-5,5\sqrt{2}\right)$ lies on the terminal side of θ , then find the value of $\tan\theta$	$\bigcirc -\frac{1}{\sqrt{2}}$	$\bigcirc \frac{1}{\sqrt{2}}$	$\sqrt{2}$	\bigcirc $-\sqrt{2}$
14.	If ${}^{n}C_{4} = {}^{n}C_{10}$, then $n =$	<u> </u>	<u> </u>	<u> </u>	<u> </u>
15.	How many distinct three-digit numbers can be formed from the integers 1,2,3,4,5,6 if each digit is used at most once?		120	<u>20</u>	<u> </u>
16.	What is the middle term in the expansion of $(x+x^{-1})^{14}$	6th term	71h term	8th term	9th term
17.	$\sin\left(\frac{3\pi}{2} - \alpha\right) =$	$\bigcap \sin \alpha$	$\cos \alpha$	$-\sin \alpha$	$-\cos \alpha$
18.	What is the primary period of $\frac{\sin 2x}{1 + \cos 2x}$	_ 2π	π	$\bigcirc \frac{\pi}{2}$	\bigcirc 4 π
19.	A ladder makes angle 30° with the wall of height $8m$. What is the length of the ladder?	16m	○ 8 <i>m</i>		○ 12 <i>m</i>
20.	What is the value of $\sin^{-1}\left(-\frac{1}{2}\right)$?	$\bigcirc -\frac{\pi}{6}$	$\bigcirc \frac{\pi}{6}$	$\bigcirc -\frac{\pi}{3}$	$\bigcirc \frac{\pi}{3}$

——1HA-I 2211-3111 (L) ——

ROL	L NU	MBE	R	

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on request.

SECTION - B (Marks 48)

Attempt any TWELVE parts. All parts carry equal marks. Q. 2

 $(12 \times 4 = 48)$

- Separate $\frac{(2-3i)^2}{1-i}$ into real and imaginary parts (i)
- Determine whether $p \to (q \to p)$ is a tautology, a contingency or an absurdity. (ii)
- If $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $R = \{(x, y) \mid x + y = 5\}$ (iii)
- (iv)
- Find the matrix A if $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{bmatrix}$ (v)
- Find the inverse of matrix $A = \begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$, hence show that $AA^{-1} = I_2$ (vi)
- If α, β are roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (vii)
- Resolve $\frac{3x-11}{(x+3)(x^2+1)}$ into partial fractions. (viii)
- If $y = 1 \frac{x}{2} + \frac{x^2}{4} \dots$, then show that $x = 2\left(\frac{1-y}{y}\right)$ (ix)
- Find values of n and r, when ${}^nC_r = 10$ and ${}^nP_r = 60$. (x)
- There are 9 green and 6 red balls in a box. A ball is drawn (taken out). What is the probability that (xi) (i) the ball is green (ii) the ball is red.
- Expand and simplify $(2+i)^4 (2-i)^4$ (xii)
- Find the remaining trigonometric functions if $\cos \theta = -\frac{1}{2}$ and the terminal arm of angle θ is in quad-III. (xiii)
- Show that $\frac{\sin(\alpha \beta)}{\sin(\alpha + \beta)} = \frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$ (xiv)
- Find the measure of smallest angle of the triangle whose sides are 16, 20 and 33 (xv)
- Show that $2\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{24}{25}$ (xvi)

<u>SECTION – C (Marks 32)</u>
Attempt any FOUR questions. All questions carry equal marks. Note:

 $(4 \times 8 = 32)$

Find the real and imaginary parts of the complex number $\frac{(\sqrt{3}-i)}{(\sqrt{3}+i)^5}$ Q. 3

$$x + y + z = 0$$

Find the value of λ for which the system $2x + y - \lambda z = 0$ has a non-trivial solution. Also solve the system for Q. 4 x + 2y - 2z = 0

- Resolve $\frac{x^2}{(x^2+4)(x+2)}$ into partial fractions **(b)** Prove that ${}^nC_k + {}^nC_{k-1} = {}^{n+1}C_k$ Q. 5
- Expand $(1-2x)^{\frac{1}{3}}$ to four terms and apply it to evaluate $(0.8)^{\frac{1}{3}}$ correct to three places of decimal. Q. 6
- If $\sin \alpha = \frac{4}{5}$ and $\sin \beta = \frac{12}{13}$, where $\frac{\pi}{2} < \alpha < \pi$ and $\frac{\pi}{2} < \beta < \pi$. Find (i) $\cos(\alpha + \beta)$ (ii) $\sin(\alpha \beta)$ Q. 7
- Show that $R = \frac{abc}{4A}$ Q. 8 (a)
 - Solve the equation $\sqrt{3} \tan x \sec x 1 = 0$ for its general solution